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Closed-loop control can
help causally probe
intelligent systems.

INTRODUCTION

When studying intelligent systems in a gray-box fash-
ion, we often want to understand how some measure of
intermediate activity relates to function:
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Correlation between activity X and output Y is not suffi-
cient to infer causation:
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Controlling X removes ambiguity when characterizing
X −→ Y:
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When we can’t perfectly control X, we can use an “in-
strumental variable” R to uncover the causal effect:

R X Y

U

In our case, R is the reference value of an optimal feedback controller,
representing what we’d like X to be. Framing the problem this way
lets us leverage a rich set of instrumental variable (IV) estimation
methods.

METHODS

As a toy system, we implement the reference causal
graph with linear-Gaussian relationships:

X = mUXU + mRXR + ϵX

Y = mXYX + mUYU + ϵY

R ∼ N (0, σR) U ∼ N (0, σU)

ϵX ∼ N (0, σX) ϵY ∼ N (0, σY)

We can decompose the variance of Y into effects from X
and U:
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And compute the correlation for a purely observational
experiment (no control, σR = 0):
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robs(X, Y) =
Covobs(X, Y)√

Varobs(X)Varobs(Y)

Two-stage least squares (2SLS) is a standard IV method
for estimating mXY:

X̂ = m̂RXR Ŷ = m̂XYX̂

DEMONSTRATION

Bias and variance of causal effect estimates decrease
as the instrument strength (our control performance)
increases:
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Results across mRX , mXY, mUX , mUY conditions:
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FUTURE DIRECTIONS

When is closed-loop control helpful or necessary com-
pared to random intervention?
Closed-loop optimization could probe X more efficiently, facilitating
causal inference especially for high-dimensional input (e.g., multi-
channel optogenetics) unlikely to affect X by chance:
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Modern machine-learning methods may be needed for
nonlinear R → X and X → Y relationships:
For example, DeepIV [1], DeepGMM [2], KernelIV [3], MMR-IV [4].
Figure from Bakhitov and Singh [5]:

When designing causal inference experiments with lim-
ited instrumentation capacity, we must trade off mea-
surement and manipulation:

Proposed causal discovery metric c = ρobs(X, Y)︸ ︷︷ ︸
feature quality
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